On the Computational Power of Threshold Circuits with Sparse Activity
نویسندگان
چکیده
Circuits composed of threshold gates (McCulloch-Pitts neurons, or perceptrons) are simplified models of neural circuits with the advantage that they are theoretically more tractable than their biological counterparts. However, when such threshold circuits are designed to perform a specific computational task, they usually differ in one important respect from computations in the brain: they require very high activity. On average every second threshold gate fires (sets a 1 as output) during a computation. By contrast, the activity of neurons in the brain is much sparser, with only about 1% of neurons firing. This mismatch between threshold and neuronal circuits is due to the particular complexity measures (circuit size and circuit depth) that have been minimized in previous threshold circuit constructions. In this letter, we investigate a new complexity measure for threshold circuits, energy complexity, whose minimization yields computations with sparse activity. We prove that all computations by threshold circuits of polynomial size with entropy O(log n) can be restructured so that their energy complexity is reduced to a level near the entropy of circuit states. This entropy of circuit states is a novel circuit complexity measure, which is of interest not only in the context of threshold circuits but for circuit complexity in general. As an example of how this measure can be applied, we show that any polynomial size threshold circuit with entropy O(log n) can be simulated by a polynomial size threshold circuit of depth 3. Our results demonstrate that the structure of circuits that result from a minimization of their energy complexity is quite different from the structure that results from a minimization of previously considered complexity measures, and potentially closer to the structure of neural circuits in the nervous system. In particular, different pathways are activated in these circuits for different classes of inputs. This letter shows that such circuits with sparse activity have a surprisingly large computational power.
منابع مشابه
Switched-Capacitor Dynamic Threshold PMOS (SC-DTPMOS) Transistor for High Speed Sub-threshold Applications
This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of ...
متن کاملMore on Computing Boolean Functions by Sparse Real Polynomials and Related Types of Threshold Circuits
In this paper we investigate the computational power of threshold{ AND circuits versus threshold{XOR circuits. Starting from the observation that small weight threshold{AND circuits can be simulated by small weight threshold{XOR circuits we pose the question whether a Supported by the grant A1019602 of the Academy of Sciences of the Czech Republic. A major part of the results were obtained whil...
متن کاملEnergy Complexity and Entropy of Threshold Circuits
Circuits composed of threshold gates (McCulloch-Pitts neurons, or perceptrons) are simplified models of neural circuits with the advantage that they are theoretically more tractable than their biological counterparts. However, when such threshold circuits are designed to perform a specific computational task they usually differ in one important respect from computations in the brain: they requi...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2006